Quantum Pseudoentanglement

Speaker

Soumik Ghosh March 24, 2023.

Abstract

Quantum pseudorandom states are efficiently constructable states which nevertheless masquerade as Haar-random states to poly-time observers. First defined by Ji, Liu and Song, such states have found a number of applications ranging from cryptography to the AdS/CFT correspondence. A fundamental question is exactly how much entanglement is required to create such states. Haar-random states, as well as t-designs for t≥2, exhibit near-maximal entanglement. Here we provide the first construction of pseudorandom states with only polylogarithmic entanglement entropy across an equipartition of the qubits, which is the minimum possible. Our construction can be based on any one-way function secure against quantum attack. We additionally show that the entanglement in our construction is fully “tunable”, in the sense that one can have pseudorandom states with entanglement Θ(f(n)) for any desired functionω(logn)≤f(n)≤O(n).

More fundamentally, our work calls into question to what extent entanglement is a “feelable” quantity of quantum systems. Inspired by recent work of Gheorghiu and Hoban, we define a new notion which we call “pseudoentanglement”, which are ensembles of efficiently constructable quantum states which hide their entanglement entropy. We show such states exist in the strongest form possible while simultaneously being pseudorandom states. We also describe diverse applications of our result from entanglement distillation to property testing to quantum gravity.




Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Derandomization from Time-Space Tradeoffs
  • Brooks' Theorem in Graph Streams, A Single-Pass Semi-Streaming Algorithm for Δ-Coloring
  • Why we couldn't prove SETH hardness of CVP for even norms, Subset-SUM, and Many more!
  • On the Probabilistic Degree of an n-variate Boolean Function
  • Are quantum speedups for learning expressive classes possible?